Python iterators, loading data in chunks with Pandas

Python iterators

loading data in chunks with pandas

Iterators, load file in chunks

Iterators vs Iterables

an iterable is an object that can return an iterator

  • Examples: lists, strings, dictionaries, file connections
  • An object with an associated iter() method
  • Applying iter() to an iterable creates an iterator

an iterator is an object that keeps state and produces the next value when you call next() on it.

  • Produces next value with next()
In [30]:
a=[1,2,3,4]
b=iter([1,2,3,4])
c=iter([5,6,7,8])
In [31]:
print a
print b
print next(b),next(b),next(b),next(b)
print list(c)
[1, 2, 3, 4]
<listiterator object at 0x00000000044B5A90>
1 2 3 4
[5, 6, 7, 8]

Iterating over iterables

  • Python 2 does NOT work
  • range() doesn't actually create the list; instead, it creates a range object with an iterator that produces the values until it reaches the limit

    • If range() created the actual list, calling it with a value of 10^100 may not work, especially since a number as big as that may go over a regular computer's memory. The value 10^100 is actually what's called a Googol which is a 1 followed by a hundred 0s. That's a huge number!

      • calling range() with 10^100 won't actually pre-create the list.
In [15]:
# Create an iterator for range(10 ** 100): googol
googol = iter(range(10 ** 100))
---------------------------------------------------------------------------
OverflowError                             Traceback (most recent call last)
<ipython-input-15-57ef632b6db1> in <module>()
      1 # Create an iterator for range(10 ** 100): googol
----> 2 googol = iter(range(10 ** 100))
      3 

OverflowError: range() result has too many items

Iterating over dictionaries

In [32]:
a={1:9, 'what':'why?'}
In [34]:
for key,value in a.items(): print key,value
1 9
what why?

Iterating over file connections

In [40]:
f = open('university_towns.txt')
type(f)
Out[40]:
file
In [47]:
iter(f)
Out[47]:
<open file 'university_towns.txt', mode 'r' at 0x00000000041F9F60>
In [48]:
iter(f)==f
Out[48]:
True
In [49]:
next(f)
Out[49]:
'Florence (University of North Alabama)\n'
In [50]:
next(iter(f))
Out[50]:
'Jacksonville (Jacksonville State University)[2]\n'

Using enumerate

enumerate() returns an enumerate object that produces a sequence of tuples, and each of the tuples is an index-value pair.

In [65]:
# Create a list of strings: mutants
mutants = ['charles xavier',  'bobby drake', 'kurt wagner',  'max eisenhardt',  'kitty pride']
# Create a list of tuples: mutant_list
mutant_list = list(enumerate(mutants))
# Print the list of tuples
print(mutant_list)
print 
# Unpack and print the tuple pairs
for index1, value1 in enumerate(mutants):
    print(index1, value1)

print "\nChange the start index\n"
for index2, value2 in enumerate(mutants, start=3):
    print(index2, value2)
[(0, 'charles xavier'), (1, 'bobby drake'), (2, 'kurt wagner'), (3, 'max eisenhardt'), (4, 'kitty pride')]

(0, 'charles xavier')
(1, 'bobby drake')
(2, 'kurt wagner')
(3, 'max eisenhardt')
(4, 'kitty pride')

Change the start index

(3, 'charles xavier')
(4, 'bobby drake')
(5, 'kurt wagner')
(6, 'max eisenhardt')
(7, 'kitty pride')

Using zip

zip(), which takes any number of iterables and returns a zip object that is an iterator of tuples.

  • If you wanted to print the values of a zip object, you can convert it into a list and then print it.
  • Printing just a zip object will not return the values unless you unpack it first.

In Python 2 , zip() returns a list

  • Docstring: zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]

  • Return a list of tuples, where each tuple contains the i-th element from each of the argument sequences. The returned list is truncated in length to the length of the shortest argument sequence.

In [73]:
aliases = ['prof x', 'iceman', 'nightcrawler', 'magneto', 'shadowcat']
powers = ['telepathy','thermokinesis','teleportation','magnetokinesis','intangibility']

# Create a list of tuples: mutant_data
mutant_data = list(zip(mutants, aliases, powers))

# Print the list of tuples
print(mutant_data)

print 
# Create a zip object using the three lists: mutant_zip
mutant_zip = zip(mutants, aliases, powers)

# Print the zip object
print(type(mutant_zip))

# Unpack the zip object and print the tuple values
for value1, value2, value3 in mutant_zip:
    print(value1, value2, value3)
[('charles xavier', 'prof x', 'telepathy'), ('bobby drake', 'iceman', 'thermokinesis'), ('kurt wagner', 'nightcrawler', 'teleportation'), ('max eisenhardt', 'magneto', 'magnetokinesis'), ('kitty pride', 'shadowcat', 'intangibility')]

<type 'list'>
('charles xavier', 'prof x', 'telepathy')
('bobby drake', 'iceman', 'thermokinesis')
('kurt wagner', 'nightcrawler', 'teleportation')
('max eisenhardt', 'magneto', 'magnetokinesis')
('kitty pride', 'shadowcat', 'intangibility')

Loading data in chunks

  • There can be too much data to hold in memory
  • Solution: load data in chunks!
  • Pandas function: read_csv()
    • Specify the chunk: chunksize
In [78]:
import pandas as pd
from time import time
In [110]:
start = time()

df = pd.read_csv('kamcord_data.csv')

print 'used {:.2f} s'.format(time()-start)

print df.shape
df.head(1)
used 0.40 s
(357404, 6)
Out[110]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 0 5be921e9-e2bd-47ac-b1c8-94f7289324a2 APP_CLOSED 2016-09-18 03:06:25 android 2.5.1

explore

In [ ]:
a=pd.read_csv('kamcord_data.csv',chunksize=4)
b=pd.read_csv('kamcord_data.csv',iterator=True)
In [139]:
a.next()
Out[139]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 12 d078c3a4-9a80-4b12-9ca7-95873799f4be APP_CLOSED 2016-09-18 14:11:29 ios 6.4.1
1 13 a1ac31cb-6d06-401a-a33f-66f91abf1550 APP_CLOSED 2016-09-27 16:22:06 ios 6.4.1
2 14 48a70e65-205e-4ab9-9232-3bafa6fb9496 APP_CLOSED 2016-09-19 14:45:08 android 2.5.1
3 15 e8330f1a-eac6-4add-89a1-f3545b8189e7 SHOT_RECORDED 2016-09-18 12:52:17 android 2.5.1
In [140]:
x=a.next()
y=a.next()
In [143]:
y.append(x, ignore_index=True)
Out[143]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 20 d04b2d7a-d847-4790-b8ec-a975e7ba56a4 APP_CLOSED 2016-09-19 04:23:31 android 2.5.1
1 21 8dc251b8-03b6-4671-8780-389cd3bc3004 APP_CLOSED 2016-09-11 14:01:04 ios 6.4.1
2 22 e97f8a1a-bdcd-4d38-ac73-63d2b0105395 APP_CLOSED 2016-09-16 19:08:45 android 2.5.1
3 23 beb48c53-d807-4e1a-b1b6-cc20eebf679c SHOT_RECORDED 2016-09-11 06:30:35 android 2.5.1
4 16 e1f9a1cd-605d-4b94-9dfb-a011f9ec2e0d APP_OPEN 2016-09-25 21:17:22 ios 6.4.1
5 17 95b9becf-fa38-4c4a-b265-8bf2594b911a APP_OPEN 2016-09-24 16:58:35 android 2.6
6 18 19836371-f0f0-4db0-b027-a3fa2d0dbf35 SHOT_RECORDED 2016-09-23 12:15:03 ios 6.4.1
7 19 c39eeee3-6605-4970-95b8-0ddb21c81589 SHOT_RECORDED 2016-09-24 04:26:03 android 2.6
In [144]:
pd.concat([x,y], ignore_index=True)
Out[144]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 16 e1f9a1cd-605d-4b94-9dfb-a011f9ec2e0d APP_OPEN 2016-09-25 21:17:22 ios 6.4.1
1 17 95b9becf-fa38-4c4a-b265-8bf2594b911a APP_OPEN 2016-09-24 16:58:35 android 2.6
2 18 19836371-f0f0-4db0-b027-a3fa2d0dbf35 SHOT_RECORDED 2016-09-23 12:15:03 ios 6.4.1
3 19 c39eeee3-6605-4970-95b8-0ddb21c81589 SHOT_RECORDED 2016-09-24 04:26:03 android 2.6
4 20 d04b2d7a-d847-4790-b8ec-a975e7ba56a4 APP_CLOSED 2016-09-19 04:23:31 android 2.5.1
5 21 8dc251b8-03b6-4671-8780-389cd3bc3004 APP_CLOSED 2016-09-11 14:01:04 ios 6.4.1
6 22 e97f8a1a-bdcd-4d38-ac73-63d2b0105395 APP_CLOSED 2016-09-16 19:08:45 android 2.5.1
7 23 beb48c53-d807-4e1a-b1b6-cc20eebf679c SHOT_RECORDED 2016-09-11 06:30:35 android 2.5.1

1st way of loading data in chunks

In [146]:
start = time()

c=0
for chuck in pd.read_csv('kamcord_data.csv',chunksize=50000):
    if c==0:
        df=chuck
        c+=1
    else:
        df=df.append(chuck, ignore_index=True)
        c+=1
print c

print 'used {:.2f} s'.format(time()-start)

print df.shape
df.head(1)
8
used 0.48 s
(357404, 6)
Out[146]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 0 5be921e9-e2bd-47ac-b1c8-94f7289324a2 APP_CLOSED 2016-09-18 03:06:25 android 2.5.1

2ed way of loading data in chunks

In [149]:
start = time()

want=[]

for chuck in pd.read_csv('kamcord_data.csv',chunksize=50000):
    want.append(chuck)

print len(want)

df=pd.concat(want, ignore_index=True)

print 'used {:.2f} s'.format(time()-start)

print df.shape
df.head(1)
8
used 0.43 s
(357404, 6)
Out[149]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 0 5be921e9-e2bd-47ac-b1c8-94f7289324a2 APP_CLOSED 2016-09-18 03:06:25 android 2.5.1

3rd way of loading data in chunks

In [172]:
start = time()

want=[]

f = pd.read_csv('kamcord_data.csv',iterator = True)

go = True
while go:
    try:
        want.append(f.get_chunk(50000))
    except Exception as e:
        print type(e)
        go = False
    
print len(want)

df=pd.concat(want, ignore_index=True)

print 'used {:.2f} s'.format(time()-start)

print df.shape
df.head(1)
<type 'exceptions.StopIteration'>
8
used 0.43 s
(357404, 6)
Out[172]:
Unnamed: 0 user_id event_name event_time os_name app_version
0 0 5be921e9-e2bd-47ac-b1c8-94f7289324a2 APP_CLOSED 2016-09-18 03:06:25 android 2.5.1

Processing large amounts of Twitter data by chunks

In [183]:
import pandas as pd

# Import package
import json

# Initialize empty list to store tweets: tweets_data
tweets_data = []

# Open connection to file
h=open('tweets.txt','r')

# Read in tweets and store in list: tweets_data
for i in h:
    try:
        print 'O',
        tmp=json.loads(i)
        tweets_data.append(tmp)
    except:
        print 'X',
h.close()


t_df = pd.DataFrame(tweets_data)
print 
print t_df.shape

t_df.to_csv('tweets.csv',index=False, encoding= 'utf-8')
t_df.head(1)
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O X O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
(615, 33)
Out[183]:
contributors coordinates created_at display_text_range entities extended_entities extended_tweet favorite_count favorited filter_level ... quoted_status_id quoted_status_id_str retweet_count retweeted retweeted_status source text timestamp_ms truncated user
0 None None Fri Feb 10 05:24:51 +0000 2017 NaN {u'user_mentions': [{u'indices': [3, 16], u'sc... NaN NaN 0 False low ... 8.299017e+17 829901721182670849 0 False {u'contributors': None, u'truncated': False, u... <a href="http://twitter.com/#!/download/ipad" ... RT @MeckeringBoy: Does Pauline secretly wear h... 1486704291616 False {u'follow_request_sent': None, u'profile_use_b...

1 rows × 33 columns

Processing large amounts of data by chunks

In [184]:
# Initialize an empty dictionary: counts_dict
counts_dict = {}

# Iterate over the file chunk by chunk
for chunk in pd.read_csv('tweets.csv', chunksize=10):

    # Iterate over the column in dataframe
    for entry in chunk['lang']:
        if entry in counts_dict.keys():
            counts_dict[entry] += 1
        else:
            counts_dict[entry] = 1

# Print the populated dictionary
print(counts_dict)
{'fr': 1, 'en': 597, 'und': 14, 'sv': 2, 'es': 1}

Extracting information for large amounts of Twitter data

  • reusable
  • def func
In [185]:
# Define count_entries()
def count_entries(csv_file, c_size, colname):
    """Return a dictionary with counts of
    occurrences as value for each key."""
    
    # Initialize an empty dictionary: counts_dict
    counts_dict = {}

    # Iterate over the file chunk by chunk
    for chunk in pd.read_csv(csv_file, chunksize=c_size):

        # Iterate over the column in dataframe
        for entry in chunk[colname]:
            if entry in counts_dict.keys():
                counts_dict[entry] += 1
            else:
                counts_dict[entry] = 1

    # Return counts_dict
    return counts_dict

# Call count_entries(): result_counts
result_counts = count_entries('tweets.csv', 10, 'lang')

# Print result_counts
print(result_counts)
{'fr': 1, 'en': 597, 'und': 14, 'sv': 2, 'es': 1}
In [ ]: